Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
app2(nil, YS) -> YS
app2(cons2(X, XS), YS) -> cons2(X, n__app2(activate1(XS), YS))
from1(X) -> cons2(X, n__from1(s1(X)))
zWadr2(nil, YS) -> nil
zWadr2(XS, nil) -> nil
zWadr2(cons2(X, XS), cons2(Y, YS)) -> cons2(app2(Y, cons2(X, n__nil)), n__zWadr2(activate1(XS), activate1(YS)))
prefix1(L) -> cons2(nil, n__zWadr2(L, prefix1(L)))
app2(X1, X2) -> n__app2(X1, X2)
from1(X) -> n__from1(X)
nil -> n__nil
zWadr2(X1, X2) -> n__zWadr2(X1, X2)
activate1(n__app2(X1, X2)) -> app2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__nil) -> nil
activate1(n__zWadr2(X1, X2)) -> zWadr2(X1, X2)
activate1(X) -> X
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
app2(nil, YS) -> YS
app2(cons2(X, XS), YS) -> cons2(X, n__app2(activate1(XS), YS))
from1(X) -> cons2(X, n__from1(s1(X)))
zWadr2(nil, YS) -> nil
zWadr2(XS, nil) -> nil
zWadr2(cons2(X, XS), cons2(Y, YS)) -> cons2(app2(Y, cons2(X, n__nil)), n__zWadr2(activate1(XS), activate1(YS)))
prefix1(L) -> cons2(nil, n__zWadr2(L, prefix1(L)))
app2(X1, X2) -> n__app2(X1, X2)
from1(X) -> n__from1(X)
nil -> n__nil
zWadr2(X1, X2) -> n__zWadr2(X1, X2)
activate1(n__app2(X1, X2)) -> app2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__nil) -> nil
activate1(n__zWadr2(X1, X2)) -> zWadr2(X1, X2)
activate1(X) -> X
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
PREFIX1(L) -> PREFIX1(L)
ACTIVATE1(n__zWadr2(X1, X2)) -> ZWADR2(X1, X2)
ACTIVATE1(n__app2(X1, X2)) -> APP2(X1, X2)
ZWADR2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(YS)
PREFIX1(L) -> NIL
APP2(cons2(X, XS), YS) -> ACTIVATE1(XS)
ZWADR2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(XS)
ACTIVATE1(n__nil) -> NIL
ACTIVATE1(n__from1(X)) -> FROM1(X)
ZWADR2(cons2(X, XS), cons2(Y, YS)) -> APP2(Y, cons2(X, n__nil))
The TRS R consists of the following rules:
app2(nil, YS) -> YS
app2(cons2(X, XS), YS) -> cons2(X, n__app2(activate1(XS), YS))
from1(X) -> cons2(X, n__from1(s1(X)))
zWadr2(nil, YS) -> nil
zWadr2(XS, nil) -> nil
zWadr2(cons2(X, XS), cons2(Y, YS)) -> cons2(app2(Y, cons2(X, n__nil)), n__zWadr2(activate1(XS), activate1(YS)))
prefix1(L) -> cons2(nil, n__zWadr2(L, prefix1(L)))
app2(X1, X2) -> n__app2(X1, X2)
from1(X) -> n__from1(X)
nil -> n__nil
zWadr2(X1, X2) -> n__zWadr2(X1, X2)
activate1(n__app2(X1, X2)) -> app2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__nil) -> nil
activate1(n__zWadr2(X1, X2)) -> zWadr2(X1, X2)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
PREFIX1(L) -> PREFIX1(L)
ACTIVATE1(n__zWadr2(X1, X2)) -> ZWADR2(X1, X2)
ACTIVATE1(n__app2(X1, X2)) -> APP2(X1, X2)
ZWADR2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(YS)
PREFIX1(L) -> NIL
APP2(cons2(X, XS), YS) -> ACTIVATE1(XS)
ZWADR2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(XS)
ACTIVATE1(n__nil) -> NIL
ACTIVATE1(n__from1(X)) -> FROM1(X)
ZWADR2(cons2(X, XS), cons2(Y, YS)) -> APP2(Y, cons2(X, n__nil))
The TRS R consists of the following rules:
app2(nil, YS) -> YS
app2(cons2(X, XS), YS) -> cons2(X, n__app2(activate1(XS), YS))
from1(X) -> cons2(X, n__from1(s1(X)))
zWadr2(nil, YS) -> nil
zWadr2(XS, nil) -> nil
zWadr2(cons2(X, XS), cons2(Y, YS)) -> cons2(app2(Y, cons2(X, n__nil)), n__zWadr2(activate1(XS), activate1(YS)))
prefix1(L) -> cons2(nil, n__zWadr2(L, prefix1(L)))
app2(X1, X2) -> n__app2(X1, X2)
from1(X) -> n__from1(X)
nil -> n__nil
zWadr2(X1, X2) -> n__zWadr2(X1, X2)
activate1(n__app2(X1, X2)) -> app2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__nil) -> nil
activate1(n__zWadr2(X1, X2)) -> zWadr2(X1, X2)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 3 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PREFIX1(L) -> PREFIX1(L)
The TRS R consists of the following rules:
app2(nil, YS) -> YS
app2(cons2(X, XS), YS) -> cons2(X, n__app2(activate1(XS), YS))
from1(X) -> cons2(X, n__from1(s1(X)))
zWadr2(nil, YS) -> nil
zWadr2(XS, nil) -> nil
zWadr2(cons2(X, XS), cons2(Y, YS)) -> cons2(app2(Y, cons2(X, n__nil)), n__zWadr2(activate1(XS), activate1(YS)))
prefix1(L) -> cons2(nil, n__zWadr2(L, prefix1(L)))
app2(X1, X2) -> n__app2(X1, X2)
from1(X) -> n__from1(X)
nil -> n__nil
zWadr2(X1, X2) -> n__zWadr2(X1, X2)
activate1(n__app2(X1, X2)) -> app2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__nil) -> nil
activate1(n__zWadr2(X1, X2)) -> zWadr2(X1, X2)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
ZWADR2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(YS)
ACTIVATE1(n__zWadr2(X1, X2)) -> ZWADR2(X1, X2)
ACTIVATE1(n__app2(X1, X2)) -> APP2(X1, X2)
APP2(cons2(X, XS), YS) -> ACTIVATE1(XS)
ZWADR2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(XS)
ZWADR2(cons2(X, XS), cons2(Y, YS)) -> APP2(Y, cons2(X, n__nil))
The TRS R consists of the following rules:
app2(nil, YS) -> YS
app2(cons2(X, XS), YS) -> cons2(X, n__app2(activate1(XS), YS))
from1(X) -> cons2(X, n__from1(s1(X)))
zWadr2(nil, YS) -> nil
zWadr2(XS, nil) -> nil
zWadr2(cons2(X, XS), cons2(Y, YS)) -> cons2(app2(Y, cons2(X, n__nil)), n__zWadr2(activate1(XS), activate1(YS)))
prefix1(L) -> cons2(nil, n__zWadr2(L, prefix1(L)))
app2(X1, X2) -> n__app2(X1, X2)
from1(X) -> n__from1(X)
nil -> n__nil
zWadr2(X1, X2) -> n__zWadr2(X1, X2)
activate1(n__app2(X1, X2)) -> app2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__nil) -> nil
activate1(n__zWadr2(X1, X2)) -> zWadr2(X1, X2)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ZWADR2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(YS)
APP2(cons2(X, XS), YS) -> ACTIVATE1(XS)
ZWADR2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(XS)
ZWADR2(cons2(X, XS), cons2(Y, YS)) -> APP2(Y, cons2(X, n__nil))
Used argument filtering: ZWADR2(x1, x2) = ZWADR2(x1, x2)
cons2(x1, x2) = cons2(x1, x2)
ACTIVATE1(x1) = x1
n__zWadr2(x1, x2) = n__zWadr2(x1, x2)
n__app2(x1, x2) = x1
APP2(x1, x2) = x1
Used ordering: Quasi Precedence:
[ZWADR_2, n__zWadr_2]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__app2(X1, X2)) -> APP2(X1, X2)
ACTIVATE1(n__zWadr2(X1, X2)) -> ZWADR2(X1, X2)
The TRS R consists of the following rules:
app2(nil, YS) -> YS
app2(cons2(X, XS), YS) -> cons2(X, n__app2(activate1(XS), YS))
from1(X) -> cons2(X, n__from1(s1(X)))
zWadr2(nil, YS) -> nil
zWadr2(XS, nil) -> nil
zWadr2(cons2(X, XS), cons2(Y, YS)) -> cons2(app2(Y, cons2(X, n__nil)), n__zWadr2(activate1(XS), activate1(YS)))
prefix1(L) -> cons2(nil, n__zWadr2(L, prefix1(L)))
app2(X1, X2) -> n__app2(X1, X2)
from1(X) -> n__from1(X)
nil -> n__nil
zWadr2(X1, X2) -> n__zWadr2(X1, X2)
activate1(n__app2(X1, X2)) -> app2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__nil) -> nil
activate1(n__zWadr2(X1, X2)) -> zWadr2(X1, X2)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 0 SCCs with 2 less nodes.